
Advances in Computer Science and its Applications (ACSA) 410
Vol. 2, No. 3, 2013, ISSN 2166-2924
Copyright © World Science Publisher, United States
www.worldsciencepublisher.org

Application Performance Evaluation on Different Compiler
Optimizations

Yiming Han

University of Texas at San Antonio, TX, USA

Email: yimingmining@gmail.com

Abstract –How to evaluate computer’s performance is an important issue for engineers in the area of computer, especially for those
vendors. Under different compiler optimizations, the application on the same computer performs diversely. In this project, we
investigate the impact of application performance with different compiler optimization levels. We choose the compiler, GCC, as our
target compiler. With the SPEC CPU2006 benchmark, we evaluate several benchmarks performance when compiling those with
different optimization levels. In addition, we employ the metric tools, GCOV, to fetch the numeric data. Through the tables and
figures, we analyze the impact of application performance affected by optimization levels.

Keywords – SPEC CPU2006, GCOV, GCC, Optimization

1. INTRODUCTION

The approaches to improve hardware performance,
especially processor, have been studied and analyzed for
many decades [10], [11]. In [1], it introduced many
features, including deep pipelining, multilevel cache
hierarchy, branch predictors, out of order execution
engine, advanced floating point and multimedia units,
aiming at improving the processor performance. However,
to explore these features successfully, compilers adapting
to specific architecture are needed. Such kind of
compilers can do the "code efficient" job by
understanding the hardware architecture. During the
compile time, they optimize the source code, and generate
the target-oriented executable codes, then do best to
maximize the application performance with the computer
architecture features.

Compiler optimization is the process by transforming
the output of a compiler by minimize or maximize some
effect/attribute of an executable program. It is very
common used in modern compilers and indeed it achieves
the better performance at the running time. To evaluate
the effect of the compiler optimization, many metric
parameters were introduced. The most common metric is
the time taken to execute a program, and the other one is
the amount of occupied memory when running the
program [2].

Techniques to optimizing the program can be divided

into many categories according to the different scopes,
varying from a single statement, a basic block, several
blocks, to the whole program. Those optimization scopes
include loop optimizations, whole-program
optimization(inter-procedural optimization), super-local
optimizations and the local optimizations [2]. In each

scope many optimization options are provided. Even
when the same sources compiled by the same compiler
with different optimization options and executed on the
same computer, would display distinct performance. In
1994, [3] tried figured out that how these optimization
options affect the application performance.

Hence, how to choose an appropriate optimization

option becomes a question pointed by Kenneth H. in [4].
GCC has several standard optimization levels, such as -
O0,-O1,-O2, and for each standard optimization levels
there are numerous optimization options. It is infeasible to
exhaust all the possible combinations of optimizations and
find out the best one. Upon this viewpoint, some research
on the relationship between the compiler performance and
optimization options have grow up over the past years. In
2004, Swathi [1] found the relationship among
optimizations of different compilers (GCC, ICC) and
performance of the executable programs by studying the
execution characteristics of SPEC CPU 2000 benchmarks
suite using Intel’s VTune Performance Analyzer on Linux
platform.

In this paper, we adopt the SPEC CPU 2006
benchmark suite on different compiler optimization levels,
and then characterize the static and dynamic behaviors of
the benchmarks to study the performance of executable
codes generated by compilers. To compare different
compiler optimizations, we compile SPEC CPU 2006
benchmark suite with ICC and GCC on the windows
operating systems. To characterize the behavior of
programs, we collect performance information, analyze
and present it visually.

The rest of this paper is organized as follows.

Necessary preliminary knowledge is introduced in section

Yiming Han et al., ACSA, Vol. 2, No. 3, pp. 410-415, 2013 411

2 to help understand the whole experiment. Section 3
presents the numeric data collected during the
experiments and comparisons. And the analysis is
included. In section 4, the conclusion is drawn.

2. PRELIMINARY

In this section, we introduce the tools utilized in the
experiments, including SPEC CPU2006, GCC, ICC,
Vtune, and gcov.

2.1 SPEC CPU2006

In 2006, the Standard Performance Evaluation
Corporation (SPEC) announced CPU2006 to replace the
old version CPU2000. The SPEC CPU2006 benchmarks
are widely used in both industry and academia and it
provides a comparative measure of integer and/or floating
point computing intensive performance. The SPEC
CPU2006 benchmarks represent a wide range application
area without similar characteristics programs. The
programs are from real life applications, instead of
artificial loop kernels or synthetic benchmarks. These
benchmarks are provided as source code and require the
user to be comfortable using compiler commands as well
as other commands via a command interpreter using a
console or command prompt window in order to generate
executable binaries [5].

"SPEC CPU2006, combined performance of CPU,
memory and compiler contains 12 SPEC2006 integer
programs and 17 floating-point programs, including [5]:

 CINT2006 (”SPECint¨), testing integer
arithmetic, with programs such as compilers,
interpreters, word processors, chess programs
etc.

 CFP2006 (”SPECfp”), testing floating point
performance, with physical simulations, 3D
graphics, image processing, computational
chemistry etc.. "

2.2 GCC Compiler [8]

"The GNU Compiler Collection (GCC) is a compiler
system produced by the GNU Project to support various
programming languages. The original version of GCC
could only handle the C programming language. However,
now GCC has been extended to support many additional
languages, e.g. Java, Fortran, ADA etc.. GCC has several
significant features that make it the strongest free software
compiler [8]:

 GCC is portable - it runs on most platforms
available today and could produce output for
many types of processors;

 `GCC could cross-compile any program, which
means that it could produce executable files for a
different system from the one used by itself;

 GCC has multiple language front-ends so that it
could parse different languages;

 GCC has a scalable design, allowing support for
new languages and architecture by adding new
modules;

 Most importantly, GCC is a free software,
meaning that anyone could use it and modify it
under certain agreement.

GCC support a range of general optimization levels so

as to control compilation-time, compiler memory usage,
and the run-time speed and code scale. The optimization
levels could be divided into three main standards, labeled
by the number 0, 1, 2, together with individual options for
specific types of optimization [8].

 -O0: This level does not provide any
optimization and compiles the source code in the
most straightforward way. This is the best way
for debugging and is the default option if there is
no optimization requirement.

 -O1: This level provides the most common forms
of optimization which do not require any speed-
space tradeoffs. Comparatively speaking, the
executable files produced by this kind of
optimization should be smaller and faster than
with the first level - -O0, because of the reduced
amounts of data that need to be processed after
simple optimization.

 -O2: This option provides further optimization
than the first two ones, since it could support
certain levels of instruction scheduling. Based on
this fact, the compiler takes longer to compile
programs and needs further requirements for
memory consumption than with -O1. And the
executables should not increase in size.

 -O3: This option turns on more expensive
optimizations, such as function inlining, in
addition to all the optimizations of the lower
levels -O2 and -O1. The -O3 optimization level
may increase the speed of the resulting
executable, but can also increase its size. Under
some circumstances where these optimizations
are not favorable, this option might actually
make a program slower.

 -funroll-loops: This level aims at loop-unrolling
which is independent of all the other three
optimization options. It will increase the size of
an executable. Whether or not this option
produces a beneficial result has to be examined
on a case-by-case basis."

2.3 ICC compiler [9]

"Intel C++ Compiler (ICC) is a collection of C and
C++ compilers from Intel, which are available for Linux,
Microsoft Windows and Mac OS X. Intel supports
compilation for its IA-32, Intel 64, Itanium 2 processors
and certain non-Intel but compatible processors, e.g.,
certain AMD processors. Intel C++ Compiler further
supports both OpenMP 3.0 and automatic parallelization
for symmetric multiprocessing.

Intel C++ Compiler belongs to the family of compilers
with the Edison Design Group front-end. The compiler is

Yiming Han et al., ACSA, Vol. 2, No. 3, pp. 410-415, 2013 412

also notable for being widely used for SPEC CPU
Benchmarks of IA-32, x86-64, and Itanium 2
architectures.
Intel’s suite of compilers’ front-ends support C, C++ and
Fortran programming languages. And it has been
compatible with GCC 3.2 and later releases.

Intel tunes its compilers to optimize for its hardware
platforms to minimize stalls and to produce code that
executes in the fewest number of cycles. The Intel C++
Compiler supports three separate high-level techniques for
optimizing the compiled program: inter-procedural
optimization (IPO), profile-guided optimization (PGO),
and high-level optimization (HLO).

IPO applies typical compiler optimizations but using a
broader scope that may include multiple procedures,
multiple files, or the entire program, while the HLO are
optimizations performed on a version of the program that
more closely represents the source code. In HLO it
includes loop interchange, loop fusion, loop unrolling,
loop distribution, data pre-fetch, and more.

PGO could be seen as a mode of optimization where the
compiler is able to access data from a sample run of the
program across a representative input set. The data would
indicate which areas of the program are executed more
frequently, and which areas are executed less frequently.
All optimizations benefit from profile-guided feedback
because they are less reliant on heuristics when making
compilation decisions.

Additionally, IPO may also include typical compiler
optimizations on a whole-program level, for example dead
code elimination, which removes code that is never
executed. To accomplish this, the compiler tests for
branches that are never taken and removes the code in that
branch."

2.4 GCOV [12]

GCOV is a test coverage program. Together with GCC,
it can help programmers to analyze the source code to
create more efficient code and find untested parts of
program. As a profiling tool, GCOV can help to discover
which optimization can best affect the source code. In
addition, GCOV can work with other profiling tool, e.g
gprof, to access which parts of codes use the greatest
amount of computing time. In the experiment, GCOV will
help to gather the some metrics, including block number
of the whole program, reachable block number and block
number of execution number larger than 1000. For the
detail of how to use the GCOV, please refer to
[12]. In this experiment, we use the optimization
parameters: -O2 -fprofile-arcs -ftest-coverage; -O2
defining the optimization level.

3. EXPERIMENT RESULTS AND ANALYSIS

In this section, we present the experiment results. We
show those numeric data sets with the tables and figures,
and analyze those data sets.

3.1 Selected Benchmark

For SPEC CPU2006, the following integer and floating
point benchmarks are selected:

 401.bzip2
 403.gcc
 429.mcf
 433.milc
 444.namd
 447.dealII
 450.soplex
 456.hmmer
 458.sjeng
 473.astar

3.2 Hardware Setting

In this experiment, we have three platforms to run
these benchmarks. The hardware settings are listed in
TABLE I.

OS CPU L1
Cache

L2
Cache

Memory

WIN7 Intel
P8600
2.4GHZ

32KB +
32KB

3MB 2GB

TABLE I HARDWARE SETTING

3.2 Result

Because of that GCOV only works together with GCC
to fetch the coverage information, so the metric for the
GCC and ICC is not the same. Therefore, in the following
we will display two different results of benchmarks on the
different compilers.

1) Static metrics: In the experiment, the static
metrics include:

 The number of basic blocks in the whole
program;

 The number of basic blocks reached when
running the program

 The number of basic blocks that were executed
more than 1000 times

Since not all the benchmarks can get static metrics

listed above. In the experiment, only the benchmarks,
401.zip2,
403. gcc, 429.mcf,433.milc,456.hmmer and 458.sjeng,
can result in the amount of basic blocks. Also, GCOV
only can work together with GCC. Hence, the following
static metric are fetched upon the platform P1. For
optimization level O0, O1, O2 and O3, the static metrics
are presented in the following Figures 1, 2, 3 and 4.

Yiming Han et al., ACSA, Vol. 2, No. 3, pp. 410-415, 2013 413

Fig 1. Static metrics in optimization level O0

Fig 2. Static metrics in optimization level O1

Fig 3. Static metrics in optimization level O2

Fig 4. Static metrics in optimization level O3

Fig 5. static metrics for 429.mcf with different

optimization level

Take the benchmark 429.mcf as example. By plotting
the amount of the basic blocks, the amount of reached
basic blocks and the amount of basic blocks executed
more than 1000 time in the Figure 5, it shows that by
utilizing the optimization, those numbers are not always
decreased. The numbers in the optimization level O1
show less than the optimization level O0. However, the
numbers in the optimization level O3 is greater than those
in the optimization level O2 and similar to O0.

For those benchmarks, let us look at the mean value of
for each optimization levels. Define that

Also, we can define the metrics

 and

Figure 6 shows the average number of blocks in
different optimization levels. As can be seen, the number
of basic blocks in the optimization level O0 is larger than
others. Because O0 does not support any optimizations
and it does not eliminate any redundancies of the source
code. At O1 optimization level, the compiler does some
redundancy elimination and optimization jobs like
constant propagation, lazy code motion, useless
elimination etc.. O2 and O3 offer more efficient
optimizations of the source code but they trade space for
time, like loop unrolling. Thus they need more number of
blocks and space to realize high level optimizations.

Fig 6. Mean value of static metrics for all benchmarks
with different optimization level

Another static metric for the benchmarks is the size of
executable program. When the compiler applies distinct

optimization levels, the size of executable program varies.
Sizes of all executable programs for each optimization

level are listed in Figure 7.

Fig 7. Size of all executable programs for each
optimization level.

From Figure 7, we can see that by using the

optimizations, the size of executable program will
decrease. However, it is not all the case for all the
optimization levels. For the optimization level O3, the
sizes of executable programs for all benchmarks are all
greater than those upon the lower optimization level O2.

Yiming Han et al., ACSA, Vol. 2, No. 3, pp. 410-415, 2013 414

Indeed, such trends reflect the variations of the numbers
of the basic blocks displayed in the Figures 1-4.

2) Dynamic metrics

Execution time is one of the most important metric to

evaluate the influence of the optimizations. In the
experiment, we run the above benchmarks upon different
optimization levels. In the SPEC CPU 2006, the iteration
of execution is 3 by default, but we set the iteration
equaling to 1 to save the running time. All the
benchmarks’ execution times are listed in Figure 8.

Fig 8. Execution time (seconds) of all executable
programs for different optimization levels.

Figure 8 and Figure 9 show the general trends of

execution speed (elapsed run-time) under four different
optimization levels for the ten selected benchmarks. From
the data, we could see that the execution time is based on
decreased tendency. The -O0 level does nothing in any
optimization and only compiles the programs in the most
straightforward way so that the executable files under this
level take the longest run time; The -O1 level of
optimization does limited work in data reduction, thus it
takes less time than the -O0 level comparatively; As
referred to the next level, the collected run-time data
indicate its further-level optimization obviously
(theoretically, this option supports instruction scheduling
which makes the compiling time longer and needs more
memory space but makes the executable files running
faster); The last column in this table contains the -O3
level results which are less than the three previous levels
in most cases (the real data we collected in our
experiments show two identical second counts in
401.bzip2) because of certain more expensive
optimizations, e.g. function inlining.

Fig 9. Plot for Execution time of all executable programs

for different optimization levels.

4. CONCLUSION AND FUTURE WORK

In this paper, we studied how to use the benchmark
suite and relevant applications to explore the application
performance and interesting features. We utilized GCC,
SPEC CPU2006 and GCOV to gather static and dynamic
metrics, analyzed the influence upon different
optimization levels. With the metrics listed above, maybe
the programmer can determine which optimization level is
better when considering the issues, such as code size,
execute time, etc.. Cloud computing [22] - [27] is
emerging as a powerful technology to meet the
requirements for high-performance computing and
massive storage. The performance [13] - [16] and security
[17] - [21] are big issues on cloud systems. In the future,
we will study the performance on cloud systems.

References

[1] Swathi Tanjore G., Aleksandar M., Execution
Characteristics of SPEC CPU2000 Benchmarks: Intel
C++ vs. Microsoft VC++, ACM SE’ 04, 2004

[2] http://en.wikipedia.org/wiki/Compiler optimization

[3] Stewart, K. E., and White, S.W. The Effects of
Compiler Options on Application Performance. In
Proceedings of IEEE International Conference on

Yiming Han et al., ACSA, Vol. 2, No. 3, pp. 410-415, 2013 415

Computer Design: VLSI in Computers and Processors,
(ICCD ’94), 1994,340-343.

[4] Kenneth H., Lieven E., COLE: Compiler Optimization
Level Exploration, International Symposium on Code
Generation and Optimization (CGO)
’08, 2008

[5] www.sepc.org/cpu2006

[6] http://en.wikipedia.org/wiki/SPECint

[7] http://software.intel.com/en-us/intel-vtune/

[8] Brian Cough, An introduction to GCC for the GNU
Compilers gcc and g++, Feb, 2004.

[9]http://software.intel.com/en-us/forums/intel-c-
compiler/

[10] Brian Fahs, Todd Rafacz, Sanjay J. Patel and Steven
S. Lumetta, Continuous Optimization, Proceedings of the
32nd annual international symposium on Computer
Architecture, 2005,86-97.

[11] C. Cascaval, E. Duesterwald, P. F. Sweeney and R.
W. Wisniewski, Performance and environment
monitoring for continuous program optimization, IBM
Journal of Research and Development,Volume 50, 2006,
239 - 248.

[12] http://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html

[13]Yiming Han and Anthony T. Chronopoulos, Distribut
ed Loop Scheduling Schemes for Cloud Systems, 2013 IE
EE 27th International Parallel and Distributed Processin
g Symposium Workshops & PhD Forum (IPDPSW), Bosto
n, MA, May 2013.

[14] Yming Han and Anthony T. Chronopoulos, Scalable
Loop Self-Scheduling Schemes Implemented on Large-
Scale Clusters, 2013 IEEE 27th International Parallel and
Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), Boston, MA, May 2013.

[15] Yming Han and Anthony T. Chronopoulos, A
Hierarchical Distributed Loop Self-Scheduling Scheme
for Cloud Systems, The 12th IEEE International
Symposium on Network Computing and Applications,
NCA 2013, Boston, MA, August 2013.

[16] Zhou, Zihao, Feng Gao, and D. Wayne Goodman.
Deposition of metal clusters on single-layer graphene/Ru
(0001): Factors that govern cluster growth, Surface
Science, 604.13 (2010): L31-L38.

[17] Qingji Zheng and Shouhuai Xu. 2012. Secure and
efficient proof of storage with deduplication.
In Proceedings of the second ACM conference on Data

and Application Security and Privacy(CODASPY '12).
ACM, New York, NY, USA, 1-12.

[18] Qingji Zheng and Shouhuai Xu. 2011. Fair and
dynamic proofs of retrievability. In Proceedings of the
first ACM conference on Data and application security
and privacy (CODASPY '11). ACM, New York, NY,
USA, 237-248.

[19] Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese.
2012. Efficient query integrity for outsourced dynamic
databases. In Proceedings of the 2012 ACM Workshop on
Cloud computing security workshop (CCSW '12). ACM,
New York, NY, USA, 71-82.

[20] Xiangxue Li, Qingji Zheng, Haifeng Qian, Dong
Zheng and Jianhua Li, Toward optimizing cauchy matrix
for cauchy reed-solomon code, IEEE Communications
Letters, vol.13, pp.603,605, August 2009

[21] Qingji Zheng; Xiangxue Li; Dong Zheng; Baoan Guo,
Regular Quasi-cyclic LDPC Codes with Girth 6 from
Prime Fields, 2010 Sixth International Conference on
Intelligent Information Hiding and Multimedia Signal
Processing (IIH-MSP), Oct. 2010

[22] Hangwei Qian, Chenghua Cao, Li Liu, Hualong Zu,
Qixin Wang, Menghui Li, Tao Lin, Exploring the
Network Scale-out in virtualized Servers, Proceeding of
International Conference on Soft Computing and Software
Engineering (SCSE 2013).

[23] Qixin Wang, Chenghua Cao, Menghui Li, Hualong
Zu (2013) A New Model Based on Grey Theory and
Neural Network Algorithm for Evaluation of AIDS
Clinical Trial, Advances in Computational Mathematics
and its Applications, Vol.2, No.3, PP. 292-297.

[24] Hualong Zu, Qixin Wang, Mingzhi Dong,Liwei Ma,
Liang Yin, Yanhui Yang(2012), Compressed Sensing
Based Fixed-Point DCT Image Encoding, Advances in
Computational Mathematics and its Applications, Vol.2,
No.2, PP. 259-262.

[25] Hangwei Qian, Hualong Zu, Chenghua Cao, Qixin
Wang (2013), CSS: Facilitate the Cloud Service Selection
in IaaS Platforms, Proceeding of IEEE International
Conference on Collaboration Technologies and Systems
(CTS).

[26] Hangwei Qian, Qixin Wang, (2013) Towards
Proximity-aware Application Deployment in Geo-
distributed Clouds, Advances in Computer Science and its
Applications, Vol.2, No.3, PP. 382-386.

[27] Qixin Wang, Yang Liu, Xiaochuan Pan (2008),
Atmosphere pollutants and mortality rate of respiratory
diseases in Beijing, Science of the Total Environment,
Vol.391 No.1, pp143–148.

