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Abstract –How to evaluate computer’s performance is an important issue for engineers in the area of computer, especially for those 
vendors. Under different compiler optimizations, the application on the same computer performs diversely. In this project, we 
investigate the impact of application performance with different compiler optimization levels. We choose the compiler, GCC, as our 
target compiler. With the SPEC CPU2006 benchmark, we evaluate several benchmarks performance when compiling those with 
different optimization levels. In addition, we employ the metric tools, GCOV, to fetch the numeric data. Through the tables and 
figures, we analyze the impact of application performance affected by optimization levels. 
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1. INTRODUCTION 
 

The approaches to improve hardware performance, 
especially processor, have been studied and analyzed for 
many decades [10], [11]. In [1], it introduced many 
features, including deep pipelining, multilevel cache 
hierarchy, branch predictors, out of order execution 
engine, advanced floating point and multimedia units, 
aiming at improving the processor performance. However, 
to explore these features successfully, compilers adapting 
to specific architecture are needed. Such kind of 
compilers can do the "code efficient" job by 
understanding the hardware architecture. During the 
compile time, they optimize the source code, and generate 
the target-oriented executable codes, then do best to 
maximize the application performance with the computer 
architecture features. 
 

Compiler optimization is the process by transforming 
the output of a compiler by minimize or maximize some 
effect/attribute of an executable program. It is very 
common used in modern compilers and indeed it achieves 
the better performance at the running time. To evaluate 
the effect of the compiler optimization, many metric 
parameters were introduced. The most common metric is 
the time taken to execute a program, and the other one is 
the amount of occupied memory when running the 
program [2]. 

 
Techniques to optimizing the program can be divided 

into many categories according to the different scopes, 
varying from a single statement, a basic block, several 
blocks, to the whole program. Those optimization scopes 
include loop optimizations, whole-program 
optimization(inter-procedural optimization), super-local 
optimizations and the local optimizations [2]. In each 

scope many optimization options are provided. Even 
when the same sources compiled by the same compiler 
with different optimization options and executed on the 
same computer, would display distinct performance. In 
1994, [3] tried figured out that how these optimization 
options affect the application performance. 

 
Hence, how to choose an appropriate optimization 

option becomes a question pointed by Kenneth H. in [4]. 
GCC has several standard optimization levels, such as -
O0,-O1,-O2, and for each standard optimization levels 
there are numerous optimization options. It is infeasible to 
exhaust all the possible combinations of optimizations and 
find out the best one. Upon this viewpoint, some research 
on the relationship between the compiler performance and 
optimization options have grow up over the past years. In 
2004, Swathi [1] found the relationship among 
optimizations of different compilers (GCC, ICC) and 
performance of the executable programs by studying the 
execution characteristics of SPEC CPU 2000 benchmarks 
suite using Intel’s VTune Performance Analyzer on Linux 
platform. 
 

In this paper, we adopt the SPEC CPU 2006 
benchmark suite on different compiler optimization levels, 
and then characterize the static and dynamic behaviors of 
the benchmarks to study the performance of executable 
codes generated by compilers. To compare different 
compiler optimizations, we compile SPEC CPU 2006 
benchmark suite with ICC and GCC on the windows 
operating systems. To characterize the behavior of 
programs, we collect performance information, analyze 
and present it visually. 

 
The rest of this paper is organized as follows. 

Necessary preliminary knowledge is introduced in section 
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2 to help understand the whole experiment. Section 3 
presents the numeric data collected during the 
experiments and comparisons. And the analysis is 
included. In section 4, the conclusion is drawn.  
 
2. PRELIMINARY 
 

In this section, we introduce the tools utilized in the 
experiments, including SPEC CPU2006, GCC, ICC, 
Vtune, and gcov. 
 
2.1 SPEC CPU2006  
 

In 2006, the Standard Performance Evaluation 
Corporation (SPEC) announced CPU2006 to replace the 
old version CPU2000. The SPEC CPU2006 benchmarks 
are widely used in both industry and academia and it 
provides a comparative measure of integer and/or floating 
point computing intensive performance. The SPEC 
CPU2006 benchmarks represent a wide range application 
area without similar characteristics programs. The 
programs are from real life applications, instead of 
artificial loop kernels or synthetic benchmarks. These 
benchmarks are provided as source code and require the 
user to be comfortable using compiler commands as well 
as other commands via a command interpreter using a 
console or command prompt window in order to generate 
executable binaries [5]. 
 

"SPEC CPU2006, combined performance of CPU, 
memory and compiler contains 12 SPEC2006 integer 
programs and 17 floating-point programs, including [5]: 

 CINT2006 (”SPECint¨), testing integer 
arithmetic, with programs such as compilers, 
interpreters, word processors, chess programs 
etc. 

 CFP2006 (”SPECfp”), testing floating point 
performance, with physical simulations, 3D 
graphics, image processing, computational 
chemistry etc.. " 

 
2.2 GCC Compiler [8] 
 

"The GNU Compiler Collection (GCC) is a compiler 
system produced by the GNU Project to support various 
programming languages. The original version of GCC 
could only handle the C programming language. However, 
now GCC has been extended to support many additional 
languages, e.g. Java, Fortran, ADA etc.. GCC has several 
significant features that make it the strongest free software 
compiler [8]: 
 

 GCC is portable - it runs on most platforms 
available today and could produce output for 
many types of processors; 

 `GCC could cross-compile any program, which 
means that it could produce executable files for a 
different system from the one used by itself; 

 GCC has multiple language front-ends so that it 
could parse different languages; 

 GCC has a scalable design, allowing support for 
new languages and architecture by adding new 
modules; 

 Most importantly, GCC is a free software, 
meaning that anyone could use it and modify it 
under certain agreement. 

 
GCC support a range of general optimization levels so 

as to control compilation-time, compiler memory usage, 
and the run-time speed and code scale. The optimization 
levels could be divided into three main standards, labeled 
by the number 0, 1, 2, together with individual options for 
specific types of optimization [8]. 

 -O0: This level does not provide any 
optimization and compiles the source code in the 
most straightforward way. This is the best way 
for debugging and is the default option if there is 
no optimization requirement. 

 -O1: This level provides the most common forms 
of optimization which do not require any speed-
space tradeoffs. Comparatively speaking, the 
executable files produced by this kind of 
optimization should be smaller and faster than 
with the first level - -O0, because of the reduced 
amounts of data that need to be processed after 
simple optimization. 

 -O2: This option provides further optimization 
than the first two ones, since it could support 
certain levels of instruction scheduling. Based on 
this fact, the compiler takes longer to compile 
programs and needs further requirements for 
memory consumption than with -O1. And the 
executables should not increase in size. 

 -O3: This option turns on more expensive 
optimizations, such as function inlining, in 
addition to all the optimizations of the lower 
levels -O2 and -O1. The -O3 optimization level 
may increase the speed of the resulting 
executable, but can also increase its size. Under 
some circumstances where these optimizations 
are not favorable, this option might actually 
make a program slower. 

 -funroll-loops: This level aims at loop-unrolling 
which is independent of all the other three 
optimization options. It will increase the size of 
an executable. Whether or not this option 
produces a beneficial result has to be examined 
on a case-by-case basis." 

 
2.3 ICC compiler [9] 
 

"Intel C++ Compiler (ICC) is a collection of C and 
C++ compilers from Intel, which are available for Linux, 
Microsoft Windows and Mac OS X. Intel supports 
compilation for its IA-32, Intel 64, Itanium 2 processors 
and certain non-Intel but compatible processors, e.g., 
certain AMD processors. Intel C++ Compiler further 
supports both OpenMP 3.0 and automatic parallelization 
for symmetric multiprocessing. 
 

Intel C++ Compiler belongs to the family of compilers 
with the Edison Design Group front-end. The compiler is 
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also notable for being widely used for SPEC CPU 
Benchmarks of IA-32, x86-64, and Itanium 2 
architectures. 
Intel’s suite of compilers’ front-ends support C, C++ and 
Fortran programming languages. And it has been 
compatible with GCC 3.2 and later releases. 
 

Intel tunes its compilers to optimize for its hardware 
platforms to minimize stalls and to produce code that 
executes in the fewest number of cycles. The Intel C++ 
Compiler supports three separate high-level techniques for 
optimizing the compiled program: inter-procedural 
optimization (IPO), profile-guided optimization (PGO), 
and high-level optimization (HLO). 
 

IPO applies typical compiler optimizations but using a 
broader scope that may include multiple procedures, 
multiple files, or the entire program, while the HLO are 
optimizations performed on a version of the program that 
more closely represents the source code. In HLO it 
includes loop interchange, loop fusion, loop unrolling, 
loop distribution, data pre-fetch, and more. 
 
PGO could be seen as a mode of optimization where the 
compiler is able to access data from a sample run of the 
program across a representative input set. The data would 
indicate which areas of the program are executed more 
frequently, and which areas are executed less frequently. 
All optimizations benefit from profile-guided feedback 
because they are less reliant on heuristics when making 
compilation decisions. 
 

Additionally, IPO may also include typical compiler 
optimizations on a whole-program level, for example dead 
code elimination, which removes code that is never 
executed. To accomplish this, the compiler tests for 
branches that are never taken and removes the code in that 
branch." 
 
2.4 GCOV [12] 
 

GCOV is a test coverage program. Together with GCC, 
it can help programmers to analyze the source code to 
create more efficient code and find untested parts of 
program. As a profiling tool, GCOV can help to discover 
which optimization can best affect the source code. In 
addition, GCOV can work with other profiling tool, e.g 
gprof, to access which parts of codes use the greatest 
amount of computing time. In the experiment, GCOV will 
help to gather the some metrics, including block number 
of the whole program, reachable block number and block 
number of execution number larger than 1000. For the 
detail of how to use the GCOV, please refer to 
[12]. In this experiment, we use the optimization 
parameters: -O2 -fprofile-arcs -ftest-coverage; -O2 
defining the optimization level. 
 
3. EXPERIMENT RESULTS AND ANALYSIS 
 

In this section, we present the experiment results. We 
show those numeric data sets with the tables and figures, 
and analyze those data sets. 
 

3.1 Selected Benchmark 
 
 
For SPEC CPU2006, the following integer and floating 
point benchmarks are selected: 
 

 401.bzip2 
 403.gcc 
 429.mcf 
 433.milc 
 444.namd 
 447.dealII 
 450.soplex 
 456.hmmer 
 458.sjeng 
 473.astar 

 
3.2 Hardware Setting 
 

In this experiment, we have three platforms to run 
these benchmarks. The hardware settings are listed in 
TABLE I. 
 

OS CPU L1 
Cache 

L2 
Cache 

Memory 

WIN7 Intel 
P8600 
2.4GHZ 

32KB + 
32KB 

3MB 2GB 

 
 

TABLE I HARDWARE SETTING 
 
 
3.2 Result 
 

Because of that GCOV only works together with GCC 
to fetch the coverage information, so the metric for the 
GCC and ICC is not the same. Therefore, in the following 
we will display two different results of benchmarks on the 
different compilers. 
 
1) Static metrics: In the experiment, the static 
metrics include: 

 The number of basic blocks in the whole 
program; 

 The number of basic blocks reached when 
running the program 

 The number of basic blocks that were executed 
more than 1000 times 

 
Since not all the benchmarks can get static metrics 

listed above. In the experiment, only the benchmarks, 
401.zip2, 
403. gcc, 429.mcf,433.milc,456.hmmer and 458.sjeng, 
can result in the amount of basic blocks. Also, GCOV 
only can work together with GCC. Hence, the following 
static metric are fetched upon the platform P1. For 
optimization level O0, O1, O2 and O3, the static metrics 
are presented in the following Figures 1, 2, 3 and 4.  
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Fig 1. Static metrics in optimization level O0 

 
 

Fig 2. Static metrics in optimization level O1 

 
 

Fig 3. Static metrics in optimization level O2 

 
 

Fig 4. Static metrics in optimization level O3 

 
Fig 5. static metrics for 429.mcf with different 

optimization level 
 

Take the benchmark 429.mcf as example. By plotting 
the amount of the basic blocks, the amount of reached 
basic blocks and the amount of basic blocks executed 
more than 1000 time in the Figure 5, it shows that by 
utilizing the optimization, those numbers are not always 
decreased. The numbers in the optimization level O1 
show less than the optimization level O0. However, the 
numbers in the optimization level O3 is greater than those 
in the optimization level O2 and similar to O0. 
 

For those benchmarks, let us look at the mean value of 
for each optimization levels. Define that 
 

 

Also, we can define the metrics 

 and  
 

Figure 6 shows the average number of blocks in 
different optimization levels. As can be seen, the number 
of basic blocks in the optimization level O0 is larger than 
others. Because O0 does not support any optimizations 
and it does not eliminate any redundancies of the source 
code. At O1 optimization level, the compiler does some 
redundancy elimination and optimization jobs like 
constant propagation, lazy code motion, useless 
elimination etc.. O2 and O3 offer more efficient 
optimizations of the source code but they trade space for 
time, like loop unrolling. Thus they need more number of 
blocks and space to realize high level optimizations. 

 

 
 

Fig 6. Mean value of static metrics for all benchmarks 
with different optimization level 
 

Another static metric for the benchmarks is the size of 
executable program. When the compiler applies distinct 

optimization levels, the size of executable program varies. 
Sizes of all executable programs for each optimization 

level are listed in Figure 7. 
 

 
 

Fig 7. Size of all executable programs for each 
optimization level. 

 
From Figure 7, we can see that by using the 

optimizations, the size of executable program will 
decrease. However, it is not all the case for all the 
optimization levels. For the optimization level O3, the 
sizes of executable programs for all benchmarks are all 
greater than those upon the lower optimization level O2. 
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Indeed, such trends reflect the variations of the numbers 
of the basic blocks displayed in the Figures 1-4. 
  
2) Dynamic metrics 

 
Execution time is one of the most important metric to 

evaluate the influence of the optimizations. In the 
experiment, we run the above benchmarks upon different 
optimization levels. In the SPEC CPU 2006, the iteration 
of execution is 3 by default, but we set the iteration 
equaling to 1 to save the running time. All the 
benchmarks’ execution times are listed in Figure 8. 
 

 
 

Fig 8. Execution time (seconds) of all executable 
programs for different optimization levels. 

 
Figure 8 and Figure 9 show the general trends of 

execution speed (elapsed run-time) under four different 
optimization levels for the ten selected benchmarks. From 
the data, we could see that the execution time is based on 
decreased tendency. The -O0 level does nothing in any 
optimization and only compiles the programs in the most 
straightforward way so that the executable files under this 
level take the longest run time; The -O1 level of 
optimization does limited work in data reduction, thus it 
takes less time than the -O0 level comparatively; As 
referred to the next level, the collected run-time data 
indicate its further-level optimization obviously 
(theoretically, this option supports instruction scheduling 
which makes the compiling time longer and needs more 
memory space but makes the executable files running 
faster); The last column in this table contains the -O3 
level results which are less than the three previous levels 
in most cases (the real data we collected in our 
experiments show two identical second counts in 
401.bzip2) because of certain more expensive 
optimizations, e.g. function inlining. 
 
 

 
 
Fig 9. Plot for Execution time of all executable programs 

for different optimization levels. 
 
 
 
4. CONCLUSION AND FUTURE WORK 
 

In this paper, we studied how to use the benchmark 
suite and relevant applications to explore the application 
performance and interesting features. We utilized GCC, 
SPEC CPU2006 and GCOV to gather static and dynamic 
metrics, analyzed the influence upon different 
optimization levels. With the metrics listed above, maybe 
the programmer can determine which optimization level is 
better when considering the issues, such as code size, 
execute time, etc.. Cloud computing [22] - [27] is 
emerging as a powerful technology to meet the 
requirements for high-performance computing and 
massive storage. The performance [13] - [16] and security 
[17] - [21] are big issues on cloud systems. In the future, 
we will study the performance on cloud systems. 
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